翻訳と辞書 |
Rational reconstruction (mathematics) : ウィキペディア英語版 | Rational reconstruction (mathematics) In mathematics, rational reconstruction is a method that allows one to recover a rational number from its value modulo an integer. If a problem with a rational solution is considered modulo a number ''m'', one will obtain the number . If |''r''| < ''N'' and 0 < ''s'' < ''D'' then ''r'' and ''s'' can be uniquely determined from ''n'' if ''m'' > 2''ND'' using the Euclidean algorithm, as follows. 〔P. S. Wang, ''a p-adic algorithm for univariate partial fractions'', Proceedings of SYMSAC ´81, ACM Press, 212 (1981); P. S. Wang, M. J. T. Guy, and J. H. Davenport, ''p-adic reconstruction of rational numbers'', SIGSAM Bulletin 16 (1982).〕 One puts and . One then repeats the following steps until the first component of ''w'' becomes . Put , put ''z'' = ''v'' − ''qw''. The new ''v'' and ''w'' are then obtained by putting ''v'' = ''w'' and ''w'' = ''z''. Then with ''w'' such that , one makes the second component positive by putting ''w'' = −''w'' if . If 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Rational reconstruction (mathematics)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|